Green Roofs Dead or Alive?

January 2009

ALLANA BUICK & BERS Making Buildings Perform Better

Copyright Materials

This presentation is protected by US and International copyright laws. Reproduction, distribution, display and use of the presentation without written permission of the speaker is prohibited.

Allana Buick & Bers, Inc. 2020

Best Practice

Allana Buick & Bers, Inc. (ABBAE) is a Registered Provider with the American Institute of Architects Continuing Education Systems. Credit earned on completion of this program will be reported to CES Records for AIA members. Certificates of completion for non-AIA members are available on request.

This program is registered with the AIA/CES for continuing professional education. As such, it does not include content that me be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product. Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

Karim P. Allana, PE, RRC, RWC

- Education: B.S., Civil Engineering, Santa Clara University
- Registration: P.E., Civil Engineering, California, Washington, Nevada, and Hawaii
- Certification: Registered Roof Consultant (RRC), Roof Consultants Institute, and Registered Waterproofing Consultant (RWC)

• Overview:

- CEO and Senior Principal at Allana Buick & Bers.
- Former Turner Construction Employee (Project Engineering and Superintendent)
- Over 37 years experience providing superior technical standards in all aspects of building technology and energy efficiency.
- Principal consultant in forensic investigations of building assemblies, failure analysis, evaluation and design of building infrastructure and building envelope evaluation and design.
- Expert in all aspects of building envelope technology.
- Completed numerous new construction, addition, rehabilitation, remodel and modernization projects for public and private sector clients.
- Specialization in siding, roofing, cement plaster, wood, water intrusion damage, window assemblies, storefronts, below grade waterproofing, energy efficiency, solar engineering and complex building envelope and mechanical assemblies.

ABBAE Firm Overview

- Allana Buick & Bers (ABBAE) is an Architectural Engineering firm specializing in Building Envelope Systems
- ABBAE is one of the 5 largest building envelope consultants in the country
- ABBAE has over 33 years of experience & over 12,500 projects
- ABBAE is also a leading Forensic Defect firm with hundreds of forensic projects (litigation)
- Locations 16 offices across California, Nevada, North Carolina, Oklahoma, Oregon, Texas, Virginia, Washington, Colorado and Hawaii

Staff & In-House Expertise

- Licensed Professional Engineers Civil, Structural, and Mechanical
- Registered Architects
- Building Enclosure Commissioning Process Providers (BECxPs)
- Registered Building Envelope Consultant (RBEC)
- Registered Roofing Consultants (RRCs)
- Registered Waterproofing Consultants (RWCs)
- Registered Exterior Wall Consultant (REWCs)

- Registered Roof Observers (RROs)
- Certified Exterior Insulation and Finish System (EIFS) inspectors
- Curtain Wall Specialists
- ICC Certified Building Inspectors
- Quality Assurance Monitors
- Water Testing Experts
- Leak Investigation and Diagnosis Experts
- Infrared Imaging and Nuclear Moisture Scanning Experts

ABBAE Building Expertise

- Building Envelope Systems
 - Roofing Systems
 - High-Slope/Low-Slope Roofs
 - Green/Garden Roofs
 - Drainage Systems
 - Pedestrian Plazas
 - Exterior Wall Systems
 - Wall Cladding/Siding/GFRC/pre-cast
 - EIFS/cement plaster/stucco
 - ⁻ Sheet Metal Flashings
 - Windows and Glazing Systems
 - Punched Windows
 - ⁻ Curtain Wall/Window Wall Systems
 - Sliding Glass Doors
 - Skylights

- Building Envelope Systems (cont'd)
 - Roofing & Waterproofing Systems
 - Deck/Balcony/Lanai Waterproofing
 - Podium Waterproofing
 - Pool/Spa Deck Waterproofing
 - Above-Grade/Below-Grade Waterproofing
 - All types of low and steep sloped roofing
 - Commissioning BECx
 - OPR/BOD/Commissioning Plan
- Mechanical/HVAC Systems
 - HVAC design
 - Plumbing systems
 - Commissioning and testing

ABBAE Core Services

- Consulting and third-party peer review services
- Engineer of record for building envelope systems
- Contract administration services
- Inspection services (usually direct with owner)
- Air and water performance testing
- Mock-up design, observation, and testing
- Building assessments and forensic investigations
- Litigation support and expert witness services
- Educational seminars with AIA credits

ABBAE HISTORY

- ABBAE is an Architectural Engineering Firm specializing in making buildings last longer.
- Specializing in Roofing, Waterproofing, Curtain Walls, Stucco, Windows, Below Grade, Etc.
- Our 2,200+ projects: 45% have been new Construction projects, and 55% Repair and Forensic projects.
- We make buildings sustainable, lower maintenance and repair cost; lower energy cost and make buildings more reliable

What is Green Roofing?

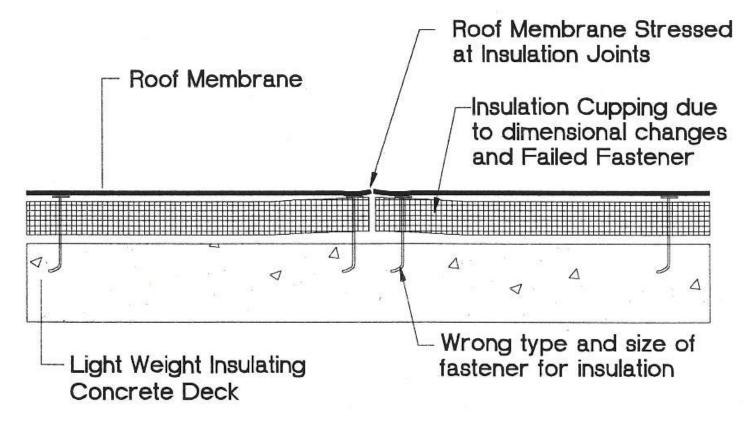
- 20 years ago, Term Green Roofs was used for Garden Roof or living roof with plants or grasses
- Today, Green roof stands for many factors like:
 - Reflectivity
 - Insulation
 - Energy saving
 - Eco Friendly material usage
 - Water management

Overview-Green Roofs Dead or Alive

- Environmental impact of roofs
 - Waste from Re-roofing
 - ⁻ Urban Heat Island Effect
 - Water Run-off
 - Building Energy Consumption
- Benefits of Various Eco-Friendly Roofs
 - [–] Reduce CO2
 - Reduce Building Energy Consumption
- New Title 24 Impact on Roofing
 - [–] New Guidelines for insulation and reflectivity
 - Impact on re-roofing

Waste Due to Short Roof Lifespan

- Roofs can last 30 to 50 years, but most don't
- Average life expectancy is between 12 and 16 years.
- Re-roofing involves demolition and huge impact to our landfill
- Re-roofing materials require large CO2 for manufacturing
- Huge Cost impact to Owner
- Inconvenience to occupants


Premature Roof Failure

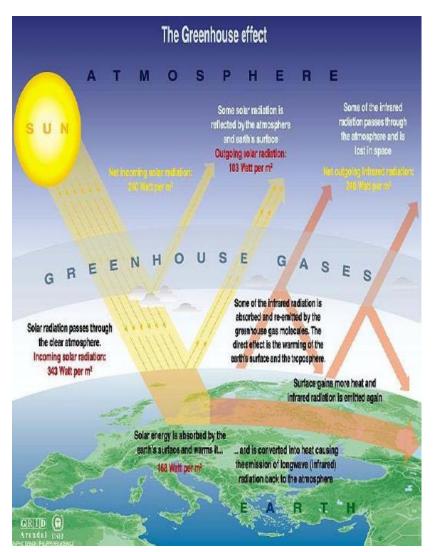
DEFECT: Improper securement of roof. Inappropriate insulation fasteners, poorly installed, causing cupping of insulation material.

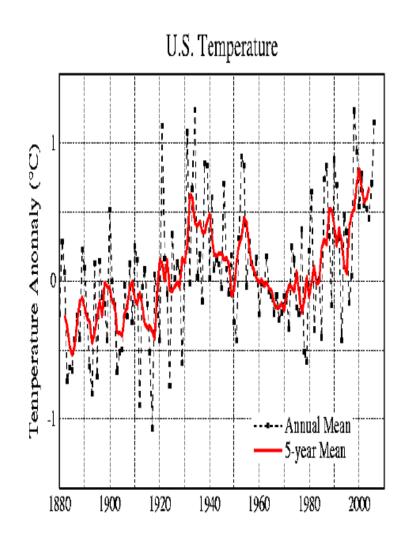
Improperly Attached Roof Caused Failure

PICTURE FRAMING + ROOF SPLITTING CAUSED BY POOR FASTENING OF INSULATION BOARD TO SUBSTRATE

Poor Flashing Causes Premature Failure

Edge flashing at 34 year old roof is splitting, due to improper workmanship (fastening). Embedded edge metal require fastening at 3"o.c. staggered, absence of which results in splitting at joints in metal

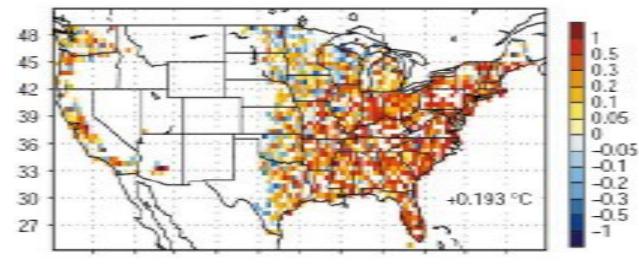

Ponding Water Leads to Deterioration


Urban Heat Island Effect

- On warm summer days, the air in urban areas can be 2°-8°F hotter than its surrounding areas. Scientists call these cities "urban heat islands."
- Dark Roofs and Roadways contribute to the extra heat
- Rooftop temperatures Range from 140°F to 180°F
- The higher temperatures in urban areas and on Rooftop increases air conditioning usage and raises pollution levels.

Greenhouse Effect

Source: EPA Heat Island Reduction Initiative



Source: NASA Goddard Institute for Space Studies

Copyright 2020 Allana Buick & Bers, Inc.

Dark Roofs Absorb and Trap Heat

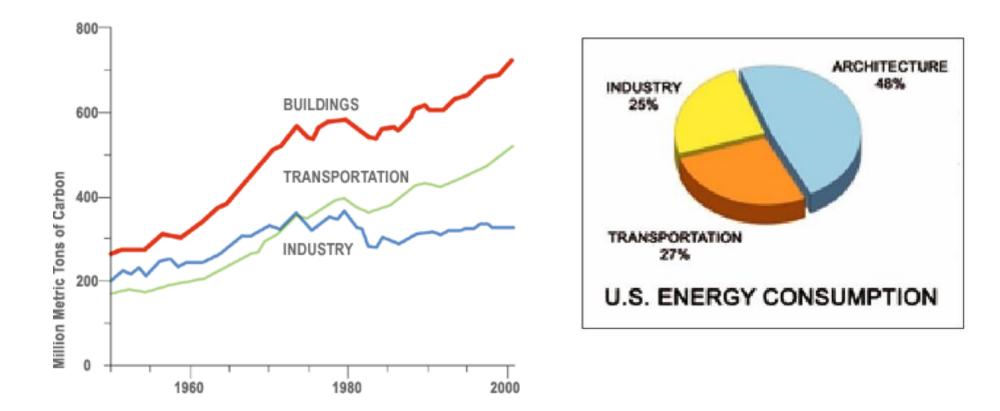
Approximately 50% of the rise in near surface air temperatures since the 1960s is attributable to land use change.

Impact of urbanization and land-use change on climate

Eugenia Kalnay & Ming Cai

University of Maryland, College Park, Maryland 20770-2425, USA

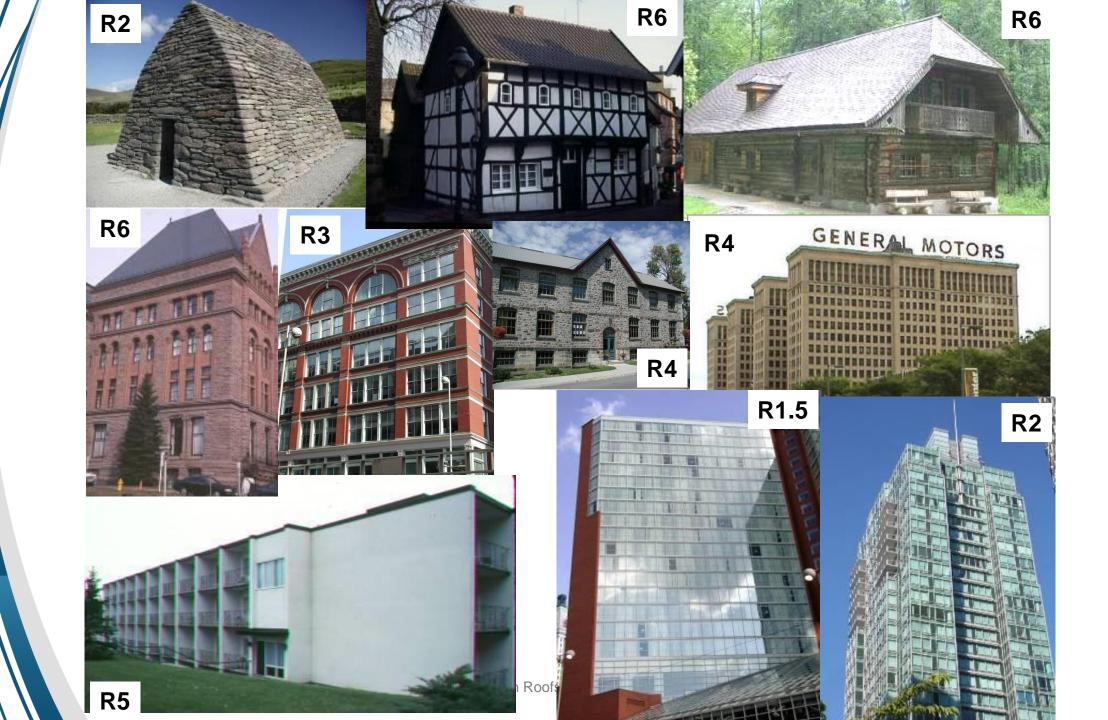
The most important anthropogenic influences on climate are the emission of greenhouse gases¹ and changes in land use, such as urbanization and agriculture². But it has been difficult to separate these two influences because both tend to increase the daily mean surface temperature^{3,4}. The impact of urbanization has been estimated by comparing observations in cities with those in surrounding rural areas, but the results differ significantly depending on whether population data⁵ or satellite measurements of night light^{6–8} are used to classify urban and rural


e the difference between trends in observed s in the continental United States and the s in a reconstruction of surface temperatures reanalysis of global weather over the past 50 sitive to surface observations, to estimate the changes on surface warming. Our results he observed decrease in diurnal temperature n and other land-use changes. Moreover, our mean surface warming per century due to

NATURE | VOL 423 | 29 MAY 2003 | www.nsture.com/nature

Source: Kalnay & Cai, 2003

Copyright 2020 Allana Buick & Bers, Inc.


US Energy Consumption

www.BuildingScience.com

Green Roofs Dead or Alive?

Copyright 2020 Allana Buick & Bers, Inc.

Cool (Highly Reflective) Roofs Save Energy

Photo courtesy of Gardner-Gibson Inc., an RCMA member.

Copyright 2020 Allana Buick & Bers, Inc.

Cool Roofs Reflect Heat

- Heat is not absorbed by the building
- Cool roofs reduce energy consumption
- Are required by law
- Lower surface temperature
- Can be retrofitted

Green Roois Deau or Anve


What Is Emittance?

- Some of the sun's energy does not bounce off; it is absorbed.
- The absorbed energy is given off (emitted) at different rates by different materials.
- "Emittance" is the measure of how quickly or efficiently absorbed energy is given off.
- Heat emitted slowly has time to penetrate downward into the building
- Both emmitence and reflectivity are important

Title 24 Cool Roof Requirement

- 2008 Title 24 Part 6 Roofing Products
- Low slope initial reflectance 0.70 & initial
- emittance 0.75
- Low slope 3 year aged reflectance 0.55,
- aged emittance 0.75, 64 aged SRI
- Non-certified material default values
- Asphalt Shingles 0.08 reflectance / 0.75 emittance
- All other roofing Products 0.10 reflectance / 0.75 emittance
- Energy Star listed material is not adequate!

Title 24 Requirements Different by Zones

Title 24 New Construction Requirement

2008 Building Energy Efficiency Standards

Page 99

TA BLE143-A – PRESCRIPTIVE ENVELOPE CRITERIA FOR NONRESIDENTIAL BUILDINGS (INCLUDING RELOCATABLE PUBLIC SCHOOL BUILDINGS WHERE MANUFA CTURER CERTIFIES USE ONLY IN SPECIFIC CLIMATE ZONE; NOT INCLUDING HIGH-RISE RESIDENTIAL BUILDINGS AND GUEST ROOMS OF HOTEL/NOTEL, BUILDINGS)

										Climat	e Zone							
			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Roofs/Ceilings	Metal Building		0.065	0.065	0.065	0.065	0.065	0.065	0.065	0.065	0.065	0.065	0.065	0.065	0.065	0.065	0.065	0.065
	Wood Framed as	nd Other	0.049	0.039	0.039	0.039	0.049	0.075	0.067	0.067	0.039	0.039	0.039	0.039	0.039	0.039	0.039	0.039
Roofing Products	Low-sloped	Aged Reflectance	NR	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	NR
		Emittance	NR	075	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	NR
	Steep Sloped (less than 5	Aged Reflectance	NR	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
	1b/ft ^z)	Emittance	NR	075	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
	Steep Sloped (5 lb/ft² or	Aged Reflectance	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15	0.15
	more)	Emittance	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
Walls	Metal Building		0.113	0.061	0.113	0.061	0.061	0.113	0.113	0.061	0.061	0.061	0.061	0.061	0.061	0.061	0.057	0.061
	Metal-framed		0.098	0.062	0.082	0.062	0.062	0.098	0.098	0.062	0.062	0.062	0.062	0.062	0.062	0.062	0.062	0.062
	Mass Light		0.196	0.170	0.278	0.227	0.44	0.44	0.44	0.44	0.44	0.170	0.170	0.170	0.170	0.170	0.170	0.170
	Mass Heavy		0.253	0.650	0.650	0.650	0.650	0.690	0.690	0.690	0.690	0.650	0.184	0.253	0.211	0.184	0.184	0.160
	Wood-framed as	nd Other	0.102	0.059	0.110	0.059	0.102	0.110	0.110	0.102	0.059	0.059	0.059	0.059	0.059	0.059	0.042	0.059
Floors/Soffits	Mass		0.092	0.092	0.269	0.269	0.269	0.269	0.269	0.269	0.269	0.269	0.092	0.092	0.092	0.092	0.092	0.058
	Other		0.048	0.039	0.071	0.071	0.071	0.071	0.071	0.071	0.071	0.071	0.039	0.071	0.071	0.039	0.039	0.039
Window's	U-factor		0.47	0.47	0.77	0.77	0.77	0.77	0.77	0.77	0.77	0.47	0.47	0.47	0.47	0.47	0.47	0.47
	RSHG North	0-10% WWR	0.72	0.61	0.61	0.61	0.61	0.61	0.61	0.61	0.61	0.61	0.61	0.61	0.61	0.61	0.61	0.72
		10-20% WWR	0.49	0.51	0.61	0.61	0.61	0.61	0.61	0.61	0.61	0.51	0.51	0.51	0.51	0.51	0.51	0.49
		20-30% WWR	0.47	0.47	0.61	0.61	0.61	0.61	0.61	0.61	0.61	0.47	0.47	0.47	0.47	0.47	0.47	0.47
		30-40% WWR	0.47	0.47	0.61	0.61	0.61	0.61	0.61	0.61	0.61	0.47	0.47	0.47	0.47	0.40	0.40	0.47
	RSHG Non-	0-10% WWR	0.49	0.47	0.61	0.61	0.61	0.61	0.61	0.61	0.61	0.47	0.47	0.47	0.47	0.46	0.46	0.49
	North	10-20% WWR	0.43	0.36	0.55	0.55	0.55	0.61	0.61	0.61	0.61	0.36	0.36	0.36	0.36	0.36	0.36	0.43
		20-30% WWR	0.43	0.36	0.41	0.41	0.41	0.39	0.39	0.39	0.39	0.36	0.36	0.36	0.36	0.36	0.36	0.43
		30-40% WWR	0.43	0.31	0.41	0.41	0.41	0.34	0.34	0.34	0.34	0.31	0.31	0.31	0.31	0.31	0.31	0.43
Doors, U-	Non-Swinging		0.50	1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.45	1.45	0.50
factor	Swinging		0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70
Skylight	U-factor	Glass, curb	1.11	1.11	1.11	1.11	1.11	1.11	1.11	1.11	1.11	1.11	1.11	1.11	1.11	1.11	1.11	1.11
		Glass, no curb Plastic	0.68	0.68	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.68	0.68	0.68	0.68	0.68	0.68	0.68 1.04
	SHGC	Glass, 0-2%	NR III	0.46	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.46	0.46	0.46	0.46	0.46	0.46	NR
	artuc	Glass, 2.1-5%	NR	0.36	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.36	0.36	0.36	0.36	0.36	0.36	NR
		Plastic, 0-2%	0.69	0.50	0.69	0.69	0.69	0.69	0.69	0.69	0.69	0.56	0.56	0.50	0.69	0.50	0.50	0.69
		Plastic, 2.1-5%	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.57	0.57
Notes:		Plastic, 2.1-3%	0.50	16.20	16.20	16.20	16.20	0.50	0.50	0.50	16.21	0.57	0.57	0.30	0.50	0.50	0.50	16.31
 Mass, Li equal to 	15.0 Btu/h-ft2.	ned as having a heat	• •	-							-		s are de fi	ned as ha	ving a he	at capaciț	y greater	than or

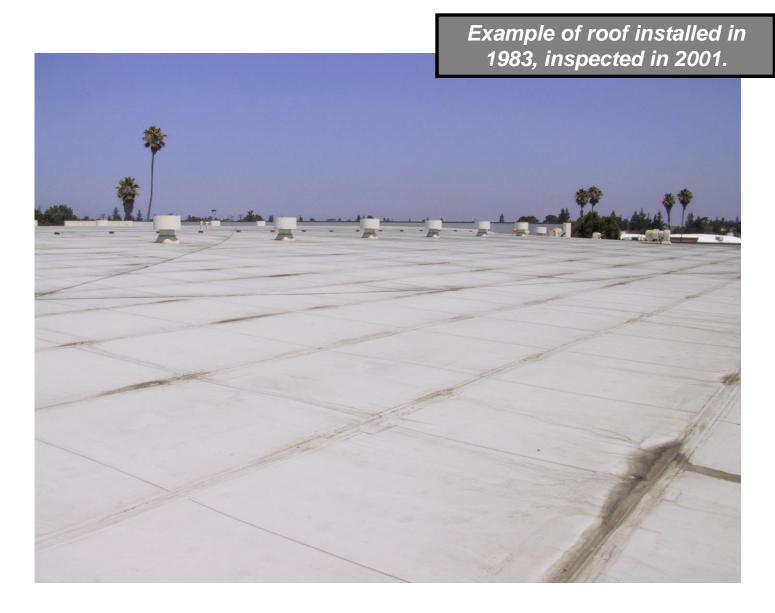
No skylight SHOC requirements are defined for climate zones 1 and 16. A climate zone without a requirement is designated as "NR

SECTION 143 - PRESCRIPTIVE REQUIREMENTS FOR BUILDING ENVELOPES

Title 24 Re-Roofing Requirement

TABLE 149-A INSULATION REQUIREMENTS FOR ROOF ALTERATIONS

	Nonresiden	itial	High-rise Residential and Guest Rooms of Hotel/Motel Buildings				
Climate Zone	Continuous Insulation R- value	U-factor	Continuous Insulation R- value	U-factor			
1	R-8	0.081	R-14	0.055			
2	R-14	0.055	R-14	0.055			
3	R-8	0.081	R-14	0.055			
4	R-8	0.081	R-14	0.055			
5	R-8	0.081	R-14	0.055			
6	R-8	0.081	R-14	0.055			
7	R-8	0.081	R-14	0.055			
8	R-8	0.081	R-14	0.055			
9	R-8	0.081	R-14	0.055			
10	R-14	0.055	R-14	0.055			
11	R-14	0.055	R-14	0.055			
12	R-14	0.055	R-14	0.055			
13	R-14	0.055	R-14	0.055			
14	R-14	0.055	R-14	0.055			
15	R-14	0.055	R-14	0.055			
16	R-14	0.055	R-14	0.055			


Energy Star Compliant Single Ply Roofing

Case Study PVC

ALLANA BUICK & BERS 31 Making Buildings Perform Better

Case Overview: Department Store

- Large department store in Northern California.
- Eighteen years old.
- No repairs, no leaks, no problem?
- Purpose of the investigation: Determine longevity of single ply.
- We were with a team of other skeptical consultants.

Forensic Methodology

- Visual inspection to observe performance of system for sustainability.
- Limited destructive testing.
- Laboratory testing of samples to compare between original membrane and aged membrane.

Sustainability Checklist

- Roof system's ability to handle foot traffic and impact damage.
- Membrane's ability to handle ponding water and condensate.
- Membrane's ability to be patched and repaired.
- Membrane's physical properties, tensile strength, thickness, bend test, etc.

Sustainability Checklist (con't)

- Was roof system sustainable for type of use (retail store)?
- Was original design of the roof system adequate for its intended use?
- Was original application (construction) installed per manufacturer's requirements?

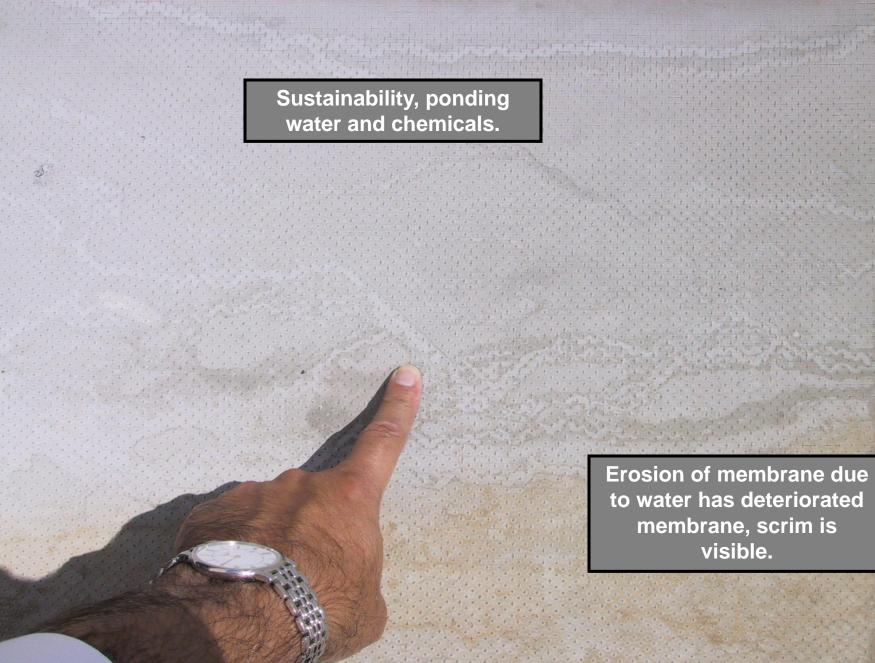
Test Cut Analysis

Copyright 2020 Allana Buick & Bers, Inc.

Visual Analysis

Design Issue

Copyright 2020 Allana Buick & Bers, Inc.


Tenant Improvement Work

New electrical pipe added, pipe jack set in mastic (not properly flashed with single ply) and wood block set in mastic (incompatible with PVC).

Visual signs of chalking and age were observed in areas of ponding water.

Laboratory Test of this 18 year old single ply

- Samples tested for thickness
- Tensile strength
- Shrinkage and dimensional change
- Seam strength
- 95%+ samples met original membrane test results

Sustainability Score

- MEMBRANE MATERIAL
 - Field areas of membrane performance good/excellent 20+ years
 - Easy to patch
- TRAFFIC AND IMPACT DAMAGE
 - Susceptible from impact damage
 - Damage easy to identify and repair

Sustainability Score

- DESIGN
 - Original poor design of pipe supports caused damage
 - Poor design of roof drainage caused ponding water and damage
 - Poor design of condensation control mechanism caused damage

Sustainability Score

- MAINTENANCE
 - Lack of frequent inspection
 - Lack of proper roof protection during remodel construction
 - Lack of proper maintenance of HVAC equipment damaged the roof
 - New pipe penetrations not properly flashed (use of asphalt mastic)

Lessons Learned (Single Ply)

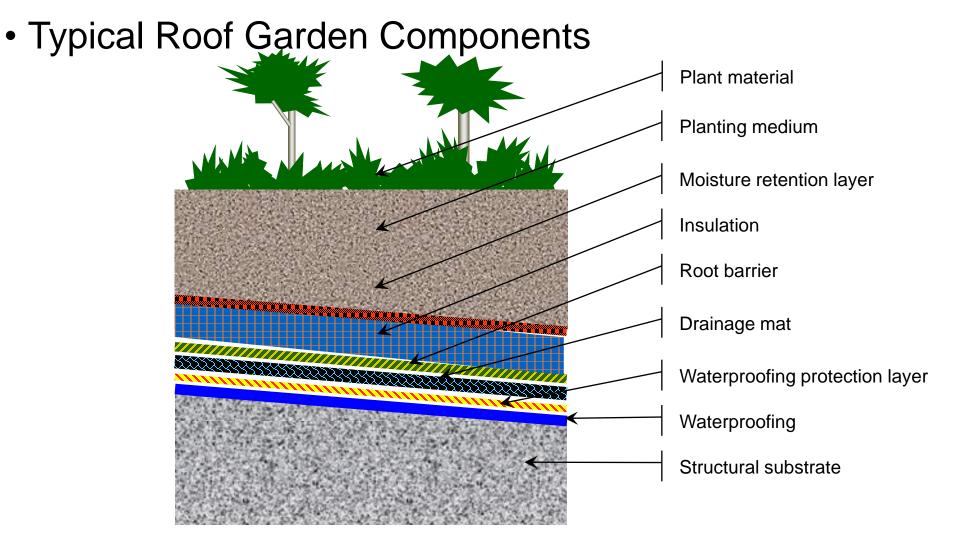
- Sustainability depends on many factors.
- Membrane's ability to handle normal exposure to sun, rain and elements.
- In 20+ years, expect the roof to go through many different challenges.
- When designing a roof, consider, building may undergo remodel, HVAC replacement, new electrical addition, etc.
- Impact of original design defects.
- Owner's lack of frequent inspections, timely repairs, and use of proper patching techniques.

Garden (Living) Roofs

- Green Benefits:
- Absorb sun's energy by plants
- Urban Heat Island Mitigation
- Noise Reduction
- Soil absorb rain water and plants use the water. Reduction in storm water run-off
- Cools atmosphere by evaporation

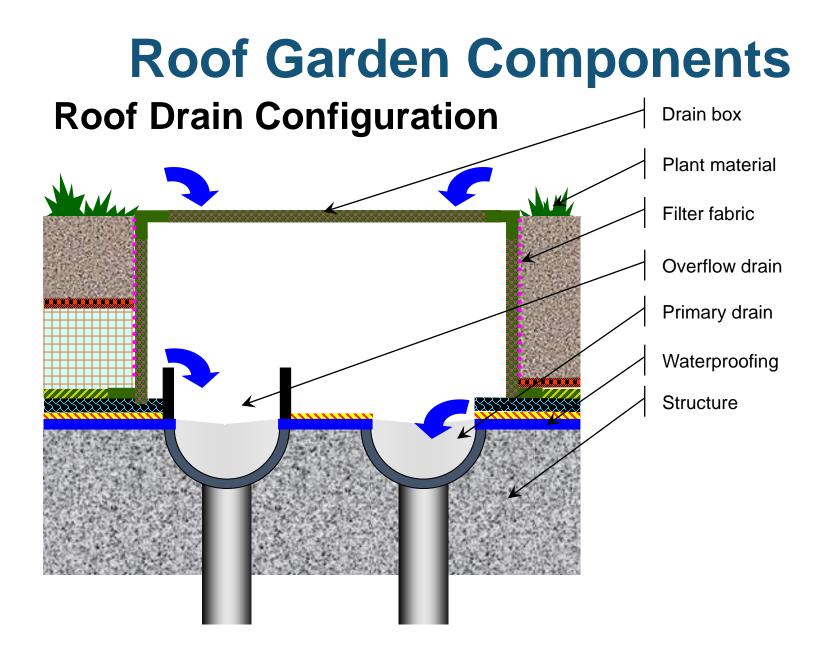
Water Run-Off

- Naturally, a lot of the rain water is absorbed in the soil, support trees and plants
- Urbanization creates hard, non-absorbing surfaces and displace plants and trees
- Hardscaping, pavement surfaces and roofs create run-off. Water is collected and directed to storm drain system, or sewage treatment plants
- Overall reduction of energy/CO2 absorbing plants


Garden Roof Systems

- Extensive
- Thin layers of growing medium (3" to 6")
- Shallow root structures
- Minimal irrigation desired
- Low system weights (15 to 30 psf)
- Used over large areas of roofing

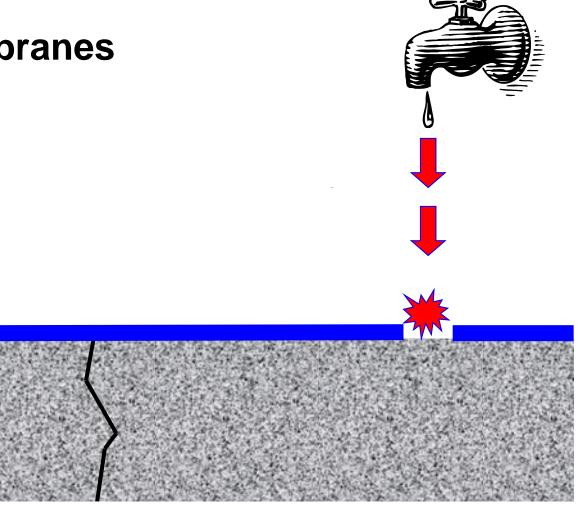
Garden Roof Systems


- Intensive
- Extensive soil layers (6" to 8'+)
- Deep root structures and tall plantings
- Irrigation typically required
- Heavy system weights (30 to >100 psf)
- Typically limited layout (but not always)

Garden Roof Systems

- Drainage
- Slope the waterproofing substrate 2% min.
- IBC 2006 Section 1507
- All* low-slope roof membranes to:

"...have a design slope of a minimum of one-fourth unit vertical in 12 units horizontal (2% slope) for drainage."



- Waterproofing
- System component that keeps us dry
- Lowest cost element in the garden system
- Most expensive to correct if it fails
- Select systems that have long track record
- Select stable manufacturers
- Recommend fully adhered (bonded) systems

- Waterproofing
- Two Major Categories
 - Fluid Applied
 - Almost always fully bonded to substrate
 - Sheet Applied Membranes
 - ⁻ May be:
 - ⁻ fully bonded
 - ⁻ partially bonded
 - loose laid

 Unbonded Membranes **~ ← ← ←**

Bonded Membranes

- Waterproofing
- Fluid Applied Cold Process
 - Cold fluid that cures into elastomeric mass
 - ⁻ Solvent cure (water, alcohol or light petroleum)
 - Catalyst cure (water)
 - [–] Chemical reaction cure
 - Best for:
 - Remote locations where kettle is impractical
 - Small areas where large quantities are not needed

Waterproofing

- Fluid Applied Heated
 - Hot fluid that cools into elastomeric mass
 - [–] Most are rubberized asphalt systems
 - [–] Very few rubberized cold tar pitch systems
 - [–] Heated in a oil jacketed kettle at "lower" temperature
 - Best for:
 - [–] Large areas where bulk materials are desired
 - [–] Phased construction sites
 - Very forgiving of construction activities- easy to fix

• Waterproofing: Hot Fluid Applied Application

Copyright 2020 Allana Buick & Bers, Inc.

• Waterproofing: Fluid Applied Application

Waterproofing

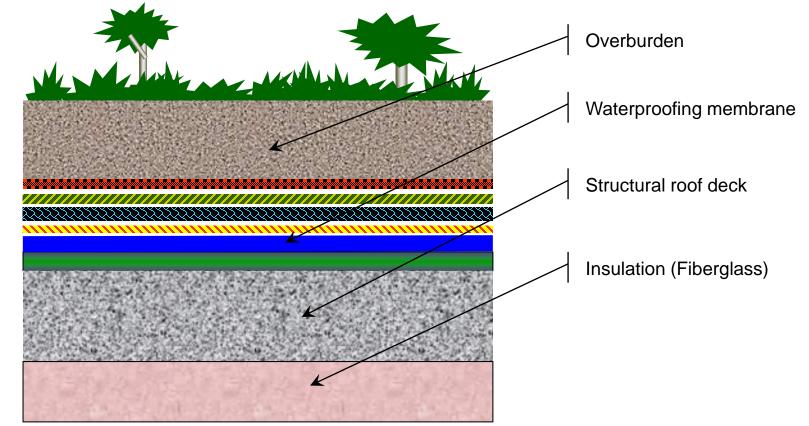
- Sheet Applied Membranes
 - Thermoplastic sheets
 - ⁻ Factory fabricated sheets 60 to 210 mils thick
 - [–] Sheet sizes are typically 2 meters wide
 - [–] Most common material is PVC or PVC Alloy
 - [–] All sheets are fiberglass or polyester reinforced
 - Seams are fused by:
 - Hot air welding (thermoplastic like PVC)
 - [–] Chemical fusing (thermoset like HDPE)

• Waterproofing: Sheet Membrane Application

Waterproofing: Sheet Membrane Application

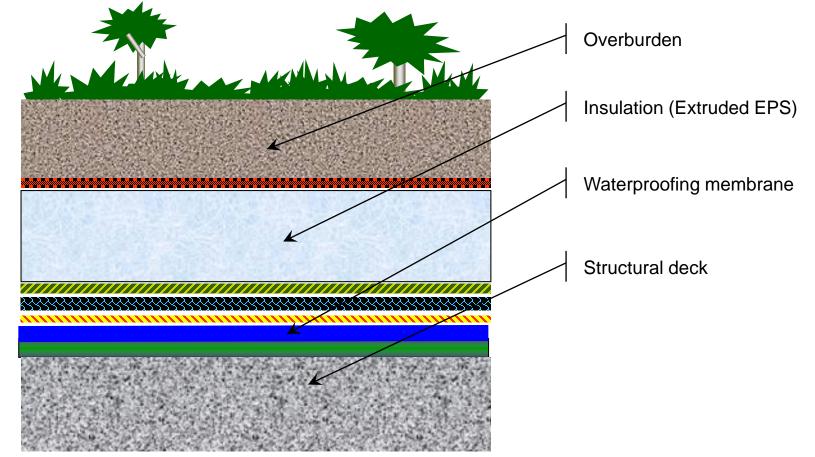
• Waterproofing: Sheet Membrane Application

• Waterproofing: Sheet Membrane Application


• Waterproofing: Sheet Membrane Application

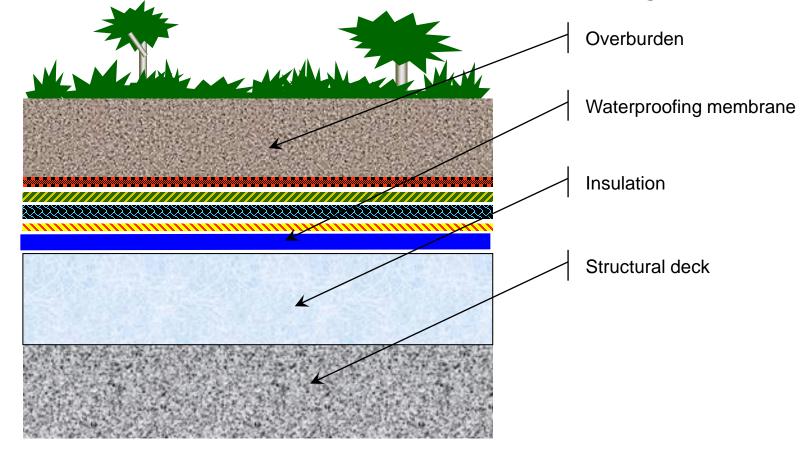
Insulation

- Where to place?
 - Under roof deck (ⓒ)
 - Above waterproofing membrane (^(C))
 - Between roof deck and membrane (⊗)


• Insulation: Under Roof Deck

Insulation is independent of waterproofing and roof garden

Copyright 2020 Allana Buick & Bers, Inc.


• Insulation: Above Waterproofing Membrane

Insulation must have sufficient compressive strength (60 to 100) psi and must not absorb water

Copyright 2020 Allana Buick & Bers, Inc.

• Insulation: Between Deck and Waterproofing

Don't do it...you will never locate a leak

Copyright 2020 Allana Buick & Bers, Inc.

Roof Garden Components • Insulation: Closed Cell Foam

Garden (Living) Roof – One with Nature

Copyright 2020 Allana Buick & Bers, Inc.

Questions?