

ALLANA BUICK & BERS

Making Buildings Perform Better

HCCA: Retrofit Fire Protection Systems

Presented by:

Joe Higgins, PE

ABBAE Division Manager October 5, 2017

Joseph Higgins, P.E. Mechanical Engineering Services Manager

EDUCATION:	B.S., Mechanical Engineering, University of Washington
REGISTRATION:	P.E., Mechanical Engineering - Hawai'i, Washington, Oregor
CERTIFICATION:	EPA Universal Refrigeration Certification
AFFILIATIONS:	American Society of Heating, Refrigerating and AC Engineers (ASHRAE)

OVERVIEW:

- 37 years experience with the engineering and operation of building mechanical systems.
- Initial project investigation, the supervision of field monitors and technicians, sampling and testing analysis, quality assurance, construction documents.
- Managing and monitoring all aspects of building construction with special attention towards the replacement and upgrade of:
 - Building HVAC systems
 - Plumbing and Piping Systems
 - Fire Protection Systems
 - Energy Management Systems
 - Solar Thermal and Solar PV systems
 - Energy Audits

Objectives

- High-Rise Fire Safety Checklist
- City & County Codes
- NFPA Standards
- Sprinkler Systems
- Fire Pump
- Stair Pressurization Fans
- Sprinkler Retrofit during Cast Iron Replacement
- Standpipe Systems
- Challenges to Retrofitting a Fire Protection System

High-Rise Fire Safety Checklist

- Install smoke alarms near sleeping areas
- Frequently check for accumulation of combustible materials
- Check for possible ignition sources

Prove Astronomy

- Keep exit ways unobstructed
- Periodically check that lights are in working condition
- Fire extinguishing equipment should be in good working order and unobstructed
- Report all hazards to the building management

Safety-Checklist: Household Fire Extinguisher

- NFPA 10 Standard for Portable Fire Extinguishers
- Select multi-purpose extinguisher, which is not so heavy and easy to handle
- Install fire extinguishers in accessible locations
- Extinguisher should be tested and labeled by an independent testing laboratory
- Fire extinguisher should have ABC ratings
- Typical rating for household usage: 3-A:40-B:C
- Operating an extinguisher, remember the word PASS
- Pull the Pin
- Aim Low
- Squeeze the lever slowly
- Sweep the nozzle from side-to-side
- Inspect annually

City & County of Honolulu Codes

- Revised Ordinances of the City and County of Honolulu (ROH 1990)
- ROH 1990 Chapter 20 Fire Code of the City & County of Honolulu
- ROH 1990 Chapter 20 2012 National Fire Protection Agency (NFPA) 1 Fire Code
- Waive Plan Review fee if Fire Sprinkler system installed in compliance with NFPA 13
- Bill 69 CD1 Amends ROH CHPTR 20 to require that all high rise buildings be protected throughout by an approved automatic sprinkler system installed by January 1, 2030

NFPA Standards

NFPA 13 – Standard for the Installation of Sprinkler Systems

NFPA 14 – Standard for the Installation of Standpipe and Hose Systems

NFPA 20 – Standard for the Installation of Stationary Pumps for Fire Protection

NFPA 72 – National Fire Alarm & Signaling Code

NFPA 92A – Standard for Smokecontrol

Systems Utilizing Barriers and Pressure Differences

Fire Protection Systems & Devices

- Fire Sprinklers
- Alarms and Signaling
- Supervised Control Valves
- Stairwell Pressurization Fans
- Fire Pump
- Standpipe Systems

Types of Sprinkler Systems

- Wet Pipe System
 - Most common type of system
 - Used where there is no risk of freezing
 - Required in high-rise, multi-story buildings
 - Uses automatic design which discharges water immediately from sprinklers opened by heat from fire
- Dry Pipe System
 - Pipes are filled with pressurized air rather than water
 - Used where there is a risk of frost damage
- Deluge System
 - Used in places considered high hazard: power plants, chemical storage, processing facilities
- Pre-Action System
 - 2-step process

Fire Sprinkler Systems

- Reliable fire protection method
- Costs less than \$2/sq. ft. in new buildings and approx. \$10/sq. ft. in existing buildings
- Head A Has a glass bulb filled with liquid which expands then heated

Sprinkler Head A

 Head B - Has two metal plates soldered together. Solder melts, releasing the plug

Sprinkler Head B

Sprinkler System Layout

ALLANA BUICK & BERS

Sprinkler System / Cast Iron Waste Piping

ALLANA BUICK & BERS

- Perhaps less inconvenience to residents
- Potential exists for combined scope of work savings

- Fire sprinkler system pipes are laid out horizontally as compared to vertical cast iron waste piping
- Different contractor crew staffing
- Different location for risers

Fire Pump

- NFPA 20 Standard for the Installation of Stationary Pumps for Fire Protection
- Needed for high-rise buildings for which local municipal water system cannot provide sufficient pressure to meet hydraulic design requirements of the fire sprinkler system

Fire Pump

- Part of the sprinkler system's water supply
- Powered by electricity and diesel
- Pump is either connected to public underground water supply piping or a tank reservoir
- Pump provides water flow at a higher pressure to the sprinkler system risers and hose standpipes
- Fire pump starts when the pressure in the sprinkler system drops below a threshold
- Pumps should be power independent of local electricity and must be connected to an emergency generator

Stair Pressurization Fans

- NFPA 92A Standard for Smoke-control System Utilizing Barriers and Pressure Differences
- During firefighting process every second is precious
- Pressurized staircases keep exit routes smoke free in an event of fire
- Mechanically driven fresh supply air into each protected space to maintain higher pressure than the fire zone
- Needs relief path

Stair Pressurization Fans cont.

- Pressurization fans must be connected with emergency generator
- Pressurization fans can be located at ground level, roof level, or any location in between
- Propeller fans should be used with windshields

ALLANA BUICK & BERS

Dry Standpipe Systems

- NFPA 14 Standard for the Installation of Standpipe and Hose Systems
- Built in a vertical or a horizontal position to which fire hoses can be connected
- Dry Standpipes can only be used by firefighters
- Dry standpipes are to be tested every five years

Wet Standpipe Systems

- NFPA 14 Standard for the Installation of Standpipe and Hose Systems
- Built in a vertical or a horizontal position to which fire hoses can be connected
- Wet Standpipes are filled with water and pressurized at all times
- Wet Standpipes can be used by building occupants

- Space for fire booster pump
- Existing water service may not be adequate for fire sprinkler
- Existing emergency generator may not be adequate for stairwell fans and booster pump
- Existing structure conditions and considerations
- Parking structure beneath tower may also require fire sprinklers
- Fire alarm system improvements
- Stairwell pressurization fan integration
- Distribution piping integration within building

